LeetCode:144.二叉树的前序遍历

写在前面,前序遍历问题能用三种算法实现,分别为递归版、迭代版1、迭代版2,其中的差异和细节值得好好体会。

题目:前序遍历

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

示例 1:

img

1
2
输入:root = [1,null,2,3]
输出:[1,2,3]

示例 2:

1
2
输入:root = []
输出:[]

示例 3:

1
2
输入:root = [1]
输出:[1]

示例 4:

img

1
2
输入:root = [1,2]
输出:[1,2]

示例 5:

img

1
2
输入:root = [1,null,2]
输出:[1,2]

提示:

  • 树中节点数目在范围 [0, 100]
  • -100 <= Node.val <= 100

进阶:递归算法很简单,你可以通过迭代算法完成吗?

题解1(递归版)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void traversal(TreeNode* node, vector<int>& vec)
{
if (node == nullptr) {
return;
}
vec.push_back(node->val);
traversal(node->left, vec);
traversal(node->right, vec);
}
vector<int> preorderTraversal(TreeNode* root) {
vector<int> vec;
traversal(root, vec);
return vec;
}
};

题解2(迭代版1)

思想:利用栈来替代递归的函数调用

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
* right(right) {}
* };
*/
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
stack<TreeNode*> stk;
stk.push(root);
vector<int> res;
if (root == nullptr) {
return res;
}
while (!stk.empty()) {
TreeNode* node = stk.top();
stk.pop();
res.push_back(node->val);
if (node->right) {
stk.push(node->right);
}
if (node->left) {
stk.push(node->left);
}

}
return res;
}
};

题解3(迭代版2)

先序遍历的宏观过程:自顶向下的依次访问左侧链上的沿途节点,再倒过来,自底向上地依次遍历各个层次上的每一颗右子树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void visitAloneLeftBranch(TreeNode* x, vector<int>& res, stack<TreeNode*>& stk) {
if (x == nullptr) {
return;
}
while (x) {
res.push_back(x->val);
if (x->right) {
stk.push(x->right);
}
x = x->left;
}
}

vector<int> preorderTraversal(TreeNode* root) {
vector<int> res;
if (root == nullptr) {
return res;
}
stack<TreeNode*> stk;
TreeNode* x = root;
while (true) {
visitAloneLeftBranch(x, res, stk);
if (stk.empty()) {
break;
}
x = stk.top();
stk.pop();
}
return res;
}
};